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We examine weak second-sound waves in He I1 at temperatures and pressures near 
one of the zeros of the Khalatnikov steepening parameter r. An extension of the 
reductive perturbation scheme of Taniuti & Wei is employed to derive the cubic 
Burgers’ equation governing these waves. It is shown that mixed nonlinearity may 
occur in disturbances in which the local value of rremains strictly positive or strictly 
negative. Further new results include expressions for the shock speed, shock 
structure and the conditions under which the shock thickness increases, rather than 
decreases, with strength. The fundamental existence conditions for temperature 
shocks are also delineated and related to the shock disintegration process observed 
in experimental studies. 

1. Introduction 
At a temperature of approximately 2.17 K ordinary liquid helium (He I) undergoes 

a transition to a second phase referred to as He I1 or superfluid helium. The unusual 
properties of superfluid helium have been documented extensively ; recent surveys 
have been given by Roberts & Donnelly (1974), Liepmann & Laguna (1984), 
Liepmann & Torczynski (1985), Donnelly & Swanson (1986) and Fiszdon & Vogel 
(1986). One of the best-known properties is the existence of a second sound mode in 
addition to ordinary sound. In He 11 the ordinary sound mode (first sound) carries 
perturbations in the pressure and density but the entropy is approximately constant. 
In contrast, the second sound mode carries perturbations in the entropy and 
temperature while the pressure and density remain constant. 

Nonlinear effects on the sound speeds were described by Khalatnikov (1952) who 
gave the first correction to the linear theory of both first and second sound. The 
expression obtained for second sound is equivalent to 

where c, is the specific heat at  constant volume, s is the entropy, T is the absolute 
temperature, 0 f a = p,/p < 1 is the mass fraction of superfluid, ps is the superfluid 
density, p is the liquid density and 

t Present address : Community Noise Research, Boeing Commercial Airplane Company, Seattle, 
WA 98124, USA. 
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FIGURE 1. Variation of Khalatnikov steepening parameter r/a. Dots represent the data of 

Dessler & Fairbank (1956). 
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FIGURE 2. Computed double-shock configuration. Undisturbed state corresponds to low pressure 
and = 1.85 K, w = 0. The maximum temperature of the square pulse is T, = 1.883 K. Values of 
& = 0.1046 and A = -0.9322 were employed. The rear shock is sonic. 

is the speed of second sound in the linear approximation. The quantity r is the usual 
first-order or quadratic nonlinearity coefficient given by 

where the differentiation in (1.3) is carried out at constant pressure. In the above 
equations and all that follow, the subscript 0 denotes quantities evaluated at the 
undisturbed state. The variation of r with temperature is shown in figure 1 .  For 
temperatures between approximately 0.95 and 1.88 K, r is positive. In this range 
second-sound wavefronts steepen forward to form shock waves which heat the 
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FIUURE 3. Computed double-shock configuration. Undisturbed state corresponds to low pressure, 
T, = 1.85 K, w = 0. The maximum temperature of the square pulse is T, = 1.9 K, Values of &, = 
0.1046 and A = -0,9322 were employed. Both shocks are sonic. 

helium. Situations involving forward steepening will be referred to as those of 
positive nonlinearity. It is clear that this is analogous to the steepening found in the 
ordinary gasdynamics of dilute gases. The region where r < 0 corresponds to 
backward steepening and the formation of shocks which cool rather than heat the 
helium; we refer to this as negative nonlinearity. Backward steepening has no 
counterpart in perfect-gas theory. However, recent studies have revealed that 
negative nonlinearity may occur in a number of other areas of classical physics. A 
comprehensive survey has been given by Thompson, Carofano & Kim (1986). 

Inspection of figure 1 suggests that the superfluid may be shocked from a region 
of positive to negative nonlinearity by appropriate choices of the undisturbed state 
and the shock strength. Recent experiments by Turner (1979, 1981, 1983) show that 
second-sound shocks suffer a partial disintegration when this occurs. For temperature 
raising shocks, the resultant waveform was seen to be a shock followed by a smooth 
heating wave. In Turner’s experiments, the heat input was such that the wave would 
propagate as a square wave in the absence of nonlinear effects. These experiments, 
as well as those of Torczynski, Gerthsen & Roesgen (1984), reveal shocks at  both the 
front and tail of the wave ; these were temperature-raising and temperature-lowering 
shocks, respectively. Turner (1979) termed this a double-shock configuration and 
argued that this occurs when r changes sign from one part of the wave to the other. 
The partial disintegration and double-shock configuration are depicted in figures 2 
and 3. 

The purpose of the present study is to determine the equation governing mixed 
nonlinearity in weak second-sound waves. It is clear that (I .  1) cannot provide such 
a description. The nonlinearity coefficient & is determined once and for all by the 
undisturbed state : waves simply steepen forward or backward depending on the sign 
of 4. Inspection of figure 1 shows that a disturbance of small amplitude will result 
in mixed nonlinearity only if the undisturbed state is sufficiently close to that where 
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r vanishes. Thus, the present study will require that r and the wave amplitudes are 
related by 

r, = O ( T )  T - T l  = o ( l ) .  

The equation governing the lowest-order disturbances will be derived by approxi- 
mating the exact conservation equations of superfluid helium. Although the 
reductive perturbation technique of Taniuti & Wei (1968) yields the wavespeed ( 1 . 1 )  
when & = O ( 1 )  and the & = 0 extension by Teymur & Suhubi (1978) can be applied 
to a restricted class of problems, no general techniques are available when (1.4) holds. 
In response to this, the present authors have developed a general extension of the 
technique of Taniuti & Wei and apply it to He 11. The general algorithm is stated in 
the Appendix. 

The general formulation and assumptions are stated in $2.  The equation governing 
non-dissipative second-sound disturbances and the corresponding nonlinear sound 
speed are given in 93. In $4 dissipative effects are treated. The dissipative results are 
then used to derive the shock speed and the fundamental existence conditions for 
shock waves. Non-classical features of the dissipative structure are also given. In 95, 
a brief discussion of the shock dynamics and the evolution of heat pulses is presented. 
Finally, in $6 we compare our results to the available experimental data. 

The evolution equation derived here is seen to be an extension of Burgers’ equation 
which includes both cubic and quadratic nonlinearity. The solutions to this equation 
have been described in detail in previous investigations and, in many cases, the 
reader will be referred to these studies. However, the solutions were presented in the 
context of NavierStokes fluids and a number of notation and convention changes 
are required to obtain results for the superfluid. To minimize the additional effort 
required and to keep the present study reasonably self-contained, some results will 
be recast and discussed in the context of He 11. 

2. Formulation 
The macroscopic description of superfluid helium is through the Landau two-fluia 

equations, see e.g. Landau & Lifshitz (1959), Khalatnikov (1965) or Putterman 
(1974). Many treatments take the dependent variables in these equations to be the 
pressure p ,  temperature T ,  the velocity of the normal fluid t ) ,  and the velocity of the 
superfluid component us. For the present purposes we find it more convenient to use 
the density p, the entropy s, the barocentric or bulk velocity 

u = Pn - u , + a u ,  P 
P P  

and the slip or counterflow velocity between the normal and superfluid components 
w = u,,-vs. Here pn = p-ps denotes the density of the normal component. We 
further assume the flow to be non-dissipative and one-dimensional. The exact two- 
fluid equations may then be written 

w, + wv, + (w”ap( 1 - 2 4  +a( 1 -a)] +&}A P 
P 

1 1 + L+(1-22#)asw2 a ( 1 - a ) + - p w + ( 1 - 2 2 a ) a , W 2  ww, = 0, (2 .2)  (“p P 
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St + ws(a +PEP) + {v + w(sa),} 5, + s{a + 2aw w2} w, = 0, 
P 

2+saS-3a  pz 

) IF 
saa 

(1 - x) wt + { 2 + w2 (a + +pap l - a  

( sT,+w2a,(sa,-2a+2) 
S X  l - a  

+ W V ,  1 + -  + 

sas-3a+2)}wz = 0, (2.4) 
S 

+{v ( 1  -%) + w (3a+- l - a  (2T, + UU,) + 2w2aW l-a 

where the subscripts t ,  x ,  p,  s and w denote differentiation with respect to time, 
position, density, entropy and the square of the slip velocity, i.e. w2. Equations (2 .1 )  
and (2 .2 )  are recognized as the usual mass and momentum balance for the bulk fluid. 
The third equation, (2 .3) ,  is the entropy balance and (2 .4 )  will be referred to as the 
slip equation. The latter was derived from the momentum equation for the superfluid 
component. Equations (2.1)-(2.4) comprise four equations for the scalar fields p(z, t ) ,  
v (x ,  t ) ,  s (x ,  t )  and w(x,  t )  once the constitutive relations 

a = .(p, 8, w2), p = p(p, s, w2) ,  T = T ( p ,  8, w2)  

are specified. We follow previous investigators in assuming a , p ,  T to be analytic 
functions of w2. 

To complete our description, we note that the chemical potential p of the 
superfluid may be defined such that 

from which the following Maxwell relations may be derived : 

= - g ~  ' g 1 T , w a  - , (2.5) 

where 

will be referred to as the coefficient of thermal expansion. The relation between p ,  T, 
w2 and p, 6, w2 is given by the differential relations 

where cp  is the specific heat at constant pressure, y is the ratio of specific heats = 
cp /c ,  and 

will be referred to as the speed of first sound. It may also be shown that the familiar 
identity 

a2 = c p -  Y-1 (2.10) 
P2T 
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holds in the present case. Equations (2.7) and (2.8) are recognized as extensions of the 
T ds equations of simple fluids and follow directly from the constitutive assumptions 
on p ,  T ,  a and the Maxwell relations. 

It is generally recognized that the coefficient of thermal expansion (2.6) is 
relatively small for temperatures of interest in the present study and this assumption 
is inherent in most derivations of the nonlinear speed of second sound ; see e.g. the 
discussion provided by Putterman (1974). In  particular (1.1) and (1.2) were obtained 
subject to this condition along with the small-disturbance approximation. In  order 
to  simplify our presentation we shall follow previous investigators and ignore terms 
involving /3 in the bulk of our computations. Once the final result is established, the 
corrections for small but finite /?will be described. I n  order to satisfy (2.10), the first- 
sound speed (2.9) will be regarded as finite as p + O ,  which implies that  y may be 
taken to be unity for the present purposes. 

Most of the assumptions to be applied here are essentially the same as those of the 
first-order theory. That is, will be regarded as negligibly small, the undisturbed 
state is taken to be at  rest (v = w = 0) and uniform (so,po = constants), and the 
second-sound disturbances will be taken to be small. The additional feature of the 
present study is that the undisturbed state will be taken to be near either of the zeros 
of r; the precise ordering is given in (1.4). 

3. Derivation of the evolution equation 
We begin by introducing non-dimensional variables 

- x - tu, 8 -  w - T  U 

TO UT 
w=- , T = -, a = - - ,  (3.1) 0 -  , g = - ,  s = - ,  x = -  t = -  p=P 

L '  L '  Po UT SO UT 

where L is a lengthscale associated with an initial or boundary condition. Overbars 
will be used to denote non-dimensional quantities throughout. When the assumption 
that /3 is negligible is applied, the non-dimensional form of the conservation 
cquations (2,1)-(2,4) is found to be 

u,+A,(u,) ujz = o(lu,-u;14), (3.2) 
where all indices range from 1 to  4, the Einstein summation convention is applied, 
ui = (p ,a , r , i~ )  and 

A,,  = T i ,  A , ,  = p, A,, = A,, = 0, 

a2 a(l-a)m2 

P P 
A,, = y+ + m y  1 - 2a) -ap, 

2a 

P 
A,, = v, A,, = W2(1--2a)ag,  A,, = --Pe+2aZT(1-a), 

am 

P 
A,, =:+map-, A,, = 0, A,, = ~+az~++wsa,, A,, = a ~ + 2 a ' ~ a ~ ,  (3.3) 

m% a! ZT2S aa2 pa 
41-  p 1--a 1--a: 1 --a 

A --aB- +- a&+ a2 ( ~ ~ ~ ) a F + ~ ,  - A,, = a+-a,, 

a28 2a2 
1--a 

A,, = 2a2a,+-(ag)2+-- 

am 2s,T0 sw - 
A,, = v+3-am+-ag+-- Ta, . 

1 -a u& 1--a 
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The quantity u: refers to the values of u, evaluated at  the undisturbed state, i.e. 

When the perturbation technique described in the Appendix is applied to the 
u; = ( l , O ,  1 , O ) .  

system (3.2), (3.3) we find that 

(3.4) 

where the shape function U satisfies the cubic Burgers' equation 

U , + ( f + t A U )  UU, = 0. (3.5) 

Here e is a non-dimensional measure of the small initial amplitude, T = &is the slow 
time and the wave coordinate X is simply 2-t due to the scaling on f. The 
nonlinearity coefficients were found to be 

where all partial derivatives appearing in (3.6) and (3.7), e.g. as, T,,, etc., are to be 
evaluated at the undisturbed state. Results (2.7), (2.8) and (1.2) may be used to 
verify that f is just &/c, where r is given in (1.3). The second nonlinearity coefficient 
(3.7) may also be converted to a quantity involving only derivatives with respect to 
p ,  T and w2; the resultant expression for A is 

A = 
cvo 

where a and c, are now regarded as functions of p ,  T and wz. To the accuracy inherent 
in (3.5) we may replace ac,/aT in (3.8) by 

This is equivalent to the condition of small & (1.4). 
Numerical values for A in the neighbourhood of the high-temperature zero of r 

have been computed and are displayed in table 1.  Most of the quantities appearing 
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““gig 
T (K) r A C” 

1.850 1.0 x 10-1 - 1.07 -0.68 
1.884 -7.4 x 10-3 -0.93 -0.70 
1 .goo -6.0 x lo-’ -0.87 -0.71 

TABLE 1. Estimates for r, A and the variation of r with temperature near 1.88 K and p x 0 bar. 
The values at 1.884 K were obtained by linear interpolation of the values at 1.85 K and 1.90 K. A 
more accurate graphical interpolation yields r x 0 at 1.884 K. 

in (3.8) were obtained directly from the tabular data of Maynard (1976). We note 
that Maynard does not provide estimates for the first and second derivatives o f a  and 
c,. In each case these derivatives were computed from a central-differencing operator 
applied to the data in table I of Maynard. In this low-pressure case, the derivative 
aa/ap was taken from the saturation data in his table 111. Maynard’s data also give 
no information concerning the aa/aw2 term in (3.8). The dependence of a on w is 
difficult to measure by current methods and no generally accepted data are available. 
However, an analytical expression for the dependence of pn on w has been provided 
by Khalatnikov (1965). Here we employ this result and further assume that the roton 
contribution to pn is the dominant one. The resultant small-w approximation to a 
may then be written 

where, for helium, B w 2.13 x (s K/m)2. An equivalent expression was employed 
by Atkin & Fox (1984). It should be noted that (3.9) is also consistent with the 
experimental results of Kojima et al. (1976). Differentiation and use of (2.5) yields 

3u2, aa x -- P o U k a , - 3 s  
a o ( l - a o ) ~ l p , T  2 a0 a0 c 

as the expression for the last term in (3.8). We note that many authors have 
neglected the dependence of a on w. When we compare the typical numerical values 
of the last term in (3.8) (approximately equal to - I )  to the final value of A in table 
1, we conclude that the contrary is true; namely, the dependence of a on w plays a 
critical role in the dynamics when r w 0. In 56, we shall show that the combination 
of (3.8) and (3.9) yields results that are in complete agreement with the available 
experimental data, thus validating the use of Khalatnikov’s formula (3.9). 

Because the errors inherent in most of the terms in (3.8) are relatively small, the 
results presented here and in the following sections can serve as the basis for the 
experimental verification or determination of the pn = p,(w) relation, at  least in the 
neighbourhood of the r = 0 locus. This method will be described in $6. 

The local speed of second sound is found by applying the method of characteristics 
to (3.5). In terms of a stationary reference frame and the physical variables we find 
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FIGURE 4. Variation of shock and second-sound speeds with disturbance amplitude. The curve for 
the shock speed corresponds to w1 = 0, = To and the horizontal coordinate should be interpreted 
as the disturbance immediately after the shock. 

A non-dimensional version of (3.10) is plotted in figure 4. An analogous wavespeed 
relation was derived by Cramer & Kluwick (1984) in the context of single-phase gases 
with large specific heats and by Garrett (1981) in the context of fourth sound in sHe- 
B. The existence of a maximum wavespeed was also recognized by Turner (1979). 
The effective steepening or nonlinearity coefficient corresponding to (3.5) is 

(3.11) 

Forward steepening corresponds to d > 0 and backward steepening corresponds to 
cf < 0. An important feature not anticipated in previous investigations is revealed 
by comparing (3.11) to the expression for the local value of r as defined by (1.3). To 
the present accuracy, the latter reads 

where 

(3.12) 
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A comparison of (3.13) to (3.8) shows that 
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this fact is also evident from table 1. We therefore conclude that the point a t  which 
the steepening coefficient (if changes sign is not the same as that a t  which the local 
value of r changes sign. Thus, cooling shocks may be formed in waves having 
r > 0 a t  every point. One example is the temperature-lowering shock seen in figure 2. 
To further illustrate this we have computed the temperature at which u’ and f, as 
defined in (3.11) and (3.12), change sign for an undisturbed state T, = 1.85 K and 
p x 0. We find that v’ changes sign a t  approximately 1.872 K and the local value of 
r changes sign at 1.884 K. 

The differences between the nonlinearity parameter based on (3.13) and A are due 
to higher-order powers of the slip velocity in (3.3) and the generation of disturbances 
in the pressure and bulk velocity a t  first, rather than lowest, order by nonlinear 
effects. The latter effect is reflected in the fact that the terms involving the first- 
sound speed a,, and the derivatives of a with respect to p cannot be generated by the 
derivatives of (1.3) with respect to temperature. The reason for the differences is that 
(1.3) is only an approximation to the exact steepening coefficient. In  the present case, 
higher-order terms which are properly neglected in the Khalatnikov theory are seen 
to make a contribution which is non-negligible in the present & = O(e) theory. 

The nonlinear steepening associated with (3.5) and (3.10) is known to differ 
qualitatively from that observed when f = O(1). The details of this steepening and 
shock formation have been given by Garrett (1981) for oscillatory signals and by 
Cramer & Kluwick (1984) for the case of pulses of finite width. 

As discussed in Q 1,  the results presented here neglect the effects of the coefficient 
of thermal expansion p. However, any extension to include /3 will leave the general 
form of (3.5) unchanged provided that the shift in the linear wavespeed is taken into 
account. Modifications to the coefficients in (3.5) are first needed when the 
appropriate non-dimensional version of is of order E .  Even in this case, the result 
of primary interest, the second-nonlinearity coefficient A ,  remains unchanged. The 
main modification needed is in r, which should be replaced by the version containing 
the first correction for non-zero p. In  addition, the linear speed should contain the 
well-known 0(p2)  = O($) correction. 

4. Dissipation and shock structure 
The dissipative fluxes for He I1 are normally taken to be linear in gradients of the 

field variables; see e.g. Khalatnikov (1965) or Putterman (1974). If we further 
assume that the dissipation is weak, we find that the extension of (3.2) may be 
writ ten 

~ t i + A i j ( ~ p ) ~ j Z  = D i j u ~ + - * * >  (4.1) 

where the left-hand side is identical to (3.2) and the dots denote terms of fourth order 
in the amplitude and higher order in the dissipation. Only the lowest-order effects of 
the weak dissipation will be considered here. As a result, the dissipation matrix D,  
is a constant. 

When the dissipation is strong compared with the nonlinear steepening the 
disturbance will damp out before the latter becomes noticeable a t  lowest order. If the 
dissipation is relatively weak, the nonlinear steepening generates shock waves. The 
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lengthscale associated with the shock thickness is normally such that the nonlinear 
and dissipative effects are in balance. As in the usual derivation of Burgers’ equation, 
we shall confine our attention to cases where the dissipation and nonlinear steepening 
occur at roughly the same rates. The precise condition is that 

lgDtjr j  = O(E*) ,  (4.2) 

where I ,  and r i  are the left and right eigenvectors of A,,(uO,) defined by (A 6).  Under 
these conditions, it may be shown that the extension of (3.5) is 

s  ̂
x - 2  

U , + ( f + + A U ) U U  - -Uxx, 

where S = S E - ~  and 

O10 T b  PO 1-a. 1 =--{ -+ -+- (Po Q-2&) +- - 
R e l - a o  3 To 70 

(4.3) 

(4.4) 

The quantities to, qb are the shear and bulk viscosities, respectively, and &, 5, are the 
additional dissipation coefficients of the two-fluid model. The non-dimensional 
quantities Re and Pr are defined 

(4.5) 

and are recognized as Reynolds and Prandtl numbers. In  (4.5) the thermal 
conductivity is denoted by k, and the use of cv instead of c p  reflects the small-p 
assumption. Because the dissipation is weak, the relation of U to the physical 
variables (3.4) holds without modification. 

The diffusivity (4.4) agrees, as it should, with the usual attenuation coefficients for 
sound absorption. This is also consistent with the coefficient derived directly from 
the steady-flow shock structure equations by Turner (1979). 

This form of the cubic Burgers’ equation (4.3) was also derived by Cramer & 
Kluwick (1984) for the case of single-phase fluids which have a large heat capacity. 
Detailed numerical solutions were obtained by Cramer et al. (1986) for the unsteady 
evolution of square pulses involving double shocks. Lee-Bapty (1981) has provided 
an extensive analysis of the f = 0 version of (4.3), see also Crighton (1986) and Lee- 
Bapty & Crighton (1987). The work of Cramer & Kluwick (1984), Crighton (1986) and 
Cramer (1987) has demonstrated that the dissipative structure of shock waves 
associated with (4.3) can differ significantly from the well-known Taylor structure. 
In  media admitting mixed nonlinearity, the dissipative structure plays an essential 
role in the determination of acceptable shock waves. For this reason, as well as the 
anticipated non-classical behaviour, the remainder of this section will summarize the 
main results for the structure as they apply to second sound. 

Equation (4.3) describes the evolution of second-sound disturbances which 
propagate in the positive x-direction, i.e. to the right. The simplest model of the 
dissipative structure of such a right-moving shock is obtained by regarding the flow 
as steady in a reference frame moving at the shock speed 

uT(1+C2#)’  
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where S will be determined below. With this assumption we find that U =  U(x) 
satisfies the ordinary differential equation 

2 

6 
U" = , ( - S + f U + $ A V )  U', (4.6) 

where the primes denote differentiation with respect to x = X -  2Sf. At this stage we 
make the well-known assumption that 

where U, and U, are the values of U upstream and downstream of the shock, 
respectively. Integration of (4.6) and application of (4.7) yields the shock speed 

S = @(Ul+U2)+$t{(Ul)2+Ul U2+(U2)') .  (4.8) 
The non-dimensional speed (4.8) may be converted to physical variables through use 
of the coordinate transformations and (3.4). When this is done we find that the 
dimensional shock speed us is given by 

(4.9) 

The first term in (4.8) is recognized as the result of Khalatnikov (1952) and the 
second term is the required correction to the shock speed when &, = O(e) .  A non- 
dimensional version of rs is plotted in figure 4 for the case of a shock propagating into 
a medium that is initially undisturbed, i.e. w, = T,-T, = 0. 

Further integration of (4.6) yields the following implicit expressions for the shock 
structure : 

---- W - - w 1 -  T-T1 - g(G+ l),  
w,-w, q-T, (4.10) 

(4.11) 

where sgn ( A )  denotes the sign of A .  The quantity Ld is a nonlinear diffusion length 
defined bv v 

(4.12) 
"0 

and x, is the dimensional distance as measured in the frame moving with the shock. 
The scaled position 6 and disturbance amplitude G are related by 

if zsgn(A) > 1 and, when zsgn(A) = 1, 

sgn G + sgn ( A )  
6 = sgn(A){iln-- l - G  

l + G  

(4.13) 

(4.14) 
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FIGURE Dissipative shock structure for 4 > 0, A < 0, w1 = 0, = T,. The sonic L..xk corres- 
ponds to the strength - 1.5 a, so/Acvo. 

The parameter z is related to the perturbations in w upstream and downstream of the 
shock by 

(4.15) 

Plots of the structure in the case where the shock propagates into an undisturbed 
medium, i.e. Tl = T,, w1 = 0, having A < 0 are given in figure 5. 

Because no continuous solutions satisfying (4.6) and (4.7) exist for sgn ( A )  z < 1, we 
conclude that admissible second-sound shock waves must satisfy 

wZ-w1 A A w1 
uT & r, UT +3+3--  ~- 

2 0 for A > 0 ,  2-1 = 2  
w2-w1 A 

uT & 
~- 

( 4 . 1 6 ~ )  

wZ-w1 A A w  
2- -+3+3-2  

w2-w1 A 

uT & 

2 + 1 = 2  uT & G u ~ < o  for A < o .  (4.16b) 
~- 

We note that the existence conditions (4.16) are independent of the dissipation 
parameters and may be applied in nondissipative calculations. It may also be shown 
that (4.16a, b) imply the speed-ordering relations 

if A > O }  
c22 us > u1 if A < O ,  

(4.17) 

where u1,u2 are the nonlinear speeds (3.10) evaluated a t  the upstream and 
downstream conditions. Thus, second-sound waves behind the shock will always 
catch the shock and waves ahead of the shock will always be caught by it. The 
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equalities in (4.16) and (4.17) correspond to  shock speeds identically equal to either 
the upstream or downstream wavespeed. We refer to such shocks as sonic and note 
that these are only possible when the nonlinearity is mixed, i.e. when d changes sign. 

As an example of the application of the existence conditions (4.16) or (4.17), we 
consider the possibility of shocks having w1 = 0,G = 0, i.e. shocks having an 
upstream state exactly a t  the zero of the steepening parameter. Inspection of (4.16) 
shows that such a temperature shock is possible only if A > 0 (where both 
temperature-lowering and temperature-raising shocks are possible). A heuristic 
argument for the isolation of the high-temperature zero can be constructed by 
considering figure 1. Temperature-raising shocks always enter the region of r < 0, 
resulting in r < O everywhere inside the shock (provided the temperature 
distribution increases monotonically). Because the steepening is backward a t  every 
point, a temperature-raising shock is expected to break up into a centred fan. Similar 
remarks hold for temperature-lowering shocks. A somewhat more rigorous version of 
this argument can be constructed by considering (3.11). As a second example, we 
consider the types of shocks possible when 4 =i= 0. We again take w1 = 0 and consider 
only the high-temperature zero, i.e. A < 0. Inspection of (4.16b) shows that the only 
shocks possible when 4 > 0 are temperature-raising shocks (w2 > 0), and are 
temperature-lowering shocks (w2 < 0) when & < 0. This, of course, is in complete 
agreement with our intuition. However, each type will be limited in strength by the 
sonic shock condition given by the equality in (4.16b). 

The structure of sonic shocks is given by (4.14). At the sonic side of the shock the 
approach to the asymptotes is algebraic rather than exponential. This relatively slow 
approach is clearly seen in figure 5. The non-classical nature of sonic shocks is further 
illustrated by an inspection of the shock thickness for undisturbed states in the 
neighbourhood of 1.88 K. I n  this region A < 0 and the sonic shock is the shock of 
maximum strength. Thus, the usual tendency of weak shocks to become thinner as 
the strength increases will be counterbalanced by the thickening associated with the 
algebraic approach inherent in (4.14). To put this on a quantitative basis we have 
computed the shock thickness based on the maximum-slope criterion. The 
dimensional thickness A is found to be 

(4.18) 

where G* = +( - z + sgn ( A )  (z2 + 3);) 

is just the value of G a t  which the slope is a maximum. The thickness (4.18) is plotted 
in figure 6 as a function of shock strength for upstream states having A < 0 and 
w1 = 7 - T, = 0. For comparison, an effective Taylor thickness A,, 

(4.19) 

has been plotted. We note that A does not ordinarily appear in the formula for the 
Taylor structure. I ts  appearance in (4.19) is due to the scaling with L,. Inspection of 
figure 6 shows that the physical effects described above lead to an increase, rather 
than decrease, in the shock thickness with strength over the range 
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Present theory (equation (4.18)) 
- 

Taylor structure r '  (equation (4.19)) 
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FIGURE 6. Shock thickness based on maximum-slope criterion for 4 > 0, A < 0, w1 = 0, !l!, = q, 

The right limit corresponds to the sonic shock and the left limit corresponds to the 
minimum in A as obtained by an analysis of (4.18). It is clear that the increase in 
thickness depicted in figures 5 and 6 could easily be mistaken for an anomolous 
increase in the dissipation coefficients, e.g. the bulk viscosity, or a temperature 
dependency of the dissipation parameters. However, because the shocks are taken to 
be weak, the dissipation coeficients are fixed by the undisturbed conditions q , p o .  
The importance of the results presented here is to show that this is due to the 
approach to sonic conditions and should be anticipated whenever T, x 1.88 K. 

By combining (4.12) and (4.19), it  may be shown that AT+ co as & + O ,  i.e. the 
Taylor thickness diverges a t  the 4 = 0 point. The present study shows that the 
higher-order terms represented by A must be retained when r is small. As a result, 
the actual thickness d remains bounded in this limit; this is easily verified by 
combining (4.12) with (4.18). However, because the nonlinear steepening is relatively 
weak, i.e. O ( E ~ )  = O(e2), the thickness A is expected to be an order (w/uT)-l larger 
than that predicted by the Taylor theory. 

5. Shock dynamics 
An important difference between the present theory and that of Khalatnikov is in 

the more complicated existence conditions required when mixed nonlinearity is 
present. When (4.16) or (4.17) are satisfied, a discontinuity generated in the helium 
remains sharp and propagates with the shock speed gS. When the existence 
conditions are violated, there is no dissipative structure and the discontinuity suffers 
either a partial or total disintegration. To illustrate the former type of disintegration, 
we consider the case of a temperature-raising discontinuity where & > 0, A < 0 and 
the helium is undisturbed ahead of the discontinuity, i.e. w1 = 0, TI = T,. When the 
temperature immediately following the initial discontinuity satisfies 

T,-q 3 a 0 s ,  r, >--- 
To 2 c,, PI '  
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the sound speed behind the shock is less than the shock speed ; this, of course, violates 
(4.17). This fact may also be verified by inspection of the plots in figure 4. If inserted 
in the flow this inadmissible discontinuity will split into a sonic shock and a smooth 
increase in temperature to T,. The temperature T, immediately following the sonic 
shock is given by 

This partial disintegration is illustrated in figure 3 and is clearly evident in the 
experiments of Turner (1979, 1981). The significance of sonic shocks is that they are 
always generated by the partial disintegration of a discontinuity and, when A < 0, 
represent the shock of maximum strength. 

It is a common misconception to infer that the partial disintegration of the shock 
necessarily occurs whenever the dynamic steepening coefficient (3.1 1) changes sign. 
If we again consider a single temperature-raising shock with A < 0, & > 0, w1 = 0, 
TI = T,, we see that cr’(T,) becomes negative when 

where T, is again the temperature immediately following the proposed shock wave. 
However, the admissibility conditions (4.16b) permit shocks up to the sonic 
condition. Thus, shocks across which cr’ changes sign are acceptable and will remain 
intact over time for 

3a0a0 T,-T, aoao --- 2->-- 
2 CVO I4 T, cvo I4’ 

Because the shock strength is fixed for all discontinuities stronger than the sonic 
value, the speed of second-sound shocks in the neighbourhood of the zero of the 
Khalatnikov steepening parameter will be limited. As T, is continuously increased 
from T,, the shock speed will increase following the parabola plotted in figure 4. Once 
the peak of the parabola is passed, the partial disintegration depicted in figure 3 
takes place and the shock speed remains fixed for all larger values of q. This 
limitation on the shock speed is compared to recent experimental results in $6. 

As indicated in $3, we think this more complete understanding of the dynamics can 
provide the basis for relatively accurate measurements of the dependence of pn on the 
counterflow velocity. At  present, experimental data for the pn = p,(w) relation is of 
the nature of an upper bound established by the accuracy of the particular 
experimental technique employed. However, the strength of sonic shocks is easily 
determined from temperature measurements similar to those presented by Turner 
(1981). Equations (5.2) and (3.8) may then be combined to establish the value of 

to unprecedented accuracy. 
The details of the evolution of arbitrary disturbances may be obtained by 

combining (3.10), (4.9) and the existence conditions (4.16) or (4.17). To conclude this 
section, we give a brief account of the evolution of square pulses as generated by an 
impulsive heat impulse ; this configuration has been used in a number of experimental 
studies. We note that a comprehensive study of square pulses subject to (3.5) has 
already been given by Cramer & Kluwick (1984) and Cramer et al. (1986). The plots 
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FIGURE 7.  2-t diagram for case (i). TRS and TLF refer to a temperature-raising shock and a 
temperature-lowering fan, respectively. 

found in figures 2 and 3 were generated through use of these exact solutions. The 
following discussion is based on an adaptation of these exact solutions to the present 
case. 

We begin by considering a heat impulse applied at  x = 0 and defined by 

0, t < O  
Q > O ,  O < t < . i ,  
0, t > .i, 

where i is recognized as the period and Q = constant. We shall employ the well- 
known result for the slip velocity and temperature rise generated by the heater: 

where the subscript m denotes the amplitude of the square pulse. The undisturbed 
helium lies in x > 0 and is taken to be uniform and at rest, i.e. T = T,, w = 0 , p  = p,, 
v = 0. We take this state to be near the high-temperature f = 0 locus such that 
-yo > 0, A < 0. We may then identify a total of four different evolution sequences 
depending on the strength of the heating. The pertinent ranges for 0 are found to be 

(ii) 

(iii) 
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FIQURE 8. z-t diagram for case ( i i ) .  TLS denotes a temperature-lowering shock. 
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(iv) 

The x-t diagram for each case is sketched in figures 7-10. 
In  case (i) the temperature rise is relatively small and the steepening coefficient 

(3.11) remains positive. As a result, the general evolution is qualitatively the same 
as the Khalatnikov theory. When the heater is turned on, a temperature-raising 
shock (denoted by TRS in figures 7-10) is generated, which propagates with constant 
strength and speed until it  is caught by the centred temperature-lowering fan 
(denoted by TLF) generated a t  t = f. The decay law arising from the shock-fan 
interaction is of the general form 

x(?I(;-:$) = constant, (5.4) 

where w, is the slip velocity immediately following the shock. It is easily verified that 
the x-i decay law of the classical theory is recovered in the small-w, limit. 

In the second case, the steepening coefficient (3.1 1) changes sign in going from T, 
to T,. However, the front shock satisfies the admissibility conditions (4.16b) or (4.17) 
and therefore remains intact as a single discontinuity. The new feature here is due to 
the fact that the nonlinear sound speed in the centred TLF has a local maximum 
where (T’ = 0; this local maximum is also depicted in figure 4. As a result, the TLF 
folds over on itself resulting in triple-valued solutions for T and w. In  the usual way, 
the triple-valued solutions are eliminated by inserting a temperature-lowering shock 
(TLS). To preserve the self-similar nature of the flow, this must be a sonic shock. 
Thus, in the initial stages of the evolution, the disturbance is headed by a 



Mixed nonlinearity and double shocks in superfluid helium 251 

t 

XO xo XeP 
X 

FIGURE 9. 2-t diagram for case (iii). 
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10. z-t diagram for case (iv). At the point marked s the rear shock becomes inadmissible 
and breaks up into a sonic shock and a non-centred temperature-lowering wave. 
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temperature-raising shock from T, to T, followed by a region of uniform flow. This 
isothermal region is terminated by a sonic temperature-lowering shock which takes 
the temperature from T, to 

where the equality in (4.16a) has been combined with (5 .3) .  The flow is then cooled 
to T, through the remainder of the centred temperature-lowering fan. Examples of 
the spatial distribution of T during this time period are plotted in figure 2. 
Experimental evidence for such a double-shock configuration is seen in the T, = 
1.865 K trace recorded by Turner (1981). The front and rear shocks eventually 
collide a t  a distance 

(5.5) 

resulting in a single non-sonic temperature-raising shock. The configurations just 
after collision are the last two distributions seen in figure 2. As shown by Cramer & 
Kluwick (1984), the merged shock has a speed which is always less than either the 
leading or trailing shocks. Thus, speed measurements of the lead shock will show a 
discontinuous jump between measurement stations on either side of the collision 
distance 2,. After the collision, the shock decays owing to the interaction with the 
centred fan according to the decay law (5 .4) .  

At heat inputs corresponding to case (iii), the admissibility conditions are no 
longer satisfied by the front shock. This shock then suffers a partial disintegration 
into a sonic temperature-raising shock and a centred temperature-raising fan. The 
early stages of this disintegration are seen in the first profile of figure 3 and in the 
T = 1.878 K temperature trace of Turner (1981). As depicted in figure 9 the 
temperature-lowering shock originating a t  the switch-off of the heat pulse must 
propagate through this fan before colliding with the front shock. The interaction 
with the temperature-raising fan weakens the rear shock according to the decay law 

where 

is the value of x a t  which the sonic temperature-lowering shock first enters the 
temperature-raising fan. Because the sonic shock speeds up during the interaction, 
the waves in the temperature-lowering fan cannot reach the rear of the shock. Thus, 
for x, > x > xo, the flow immediately following the shock is due to a non-centred 
temperature-lowering wave. The characteristic lines in this region originate a t  the 
rear of the temperature-lowering shock and, because this shock is sonic, are 
constructed tangent to it. Cramer & Kluwick (1984) have referred to this as a 
precursor wave because it always preceeded the emitting shock in the scaled 
coordinates used there. These two sonic shocks eventually collide a t  a distance 
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again resulting in a single non-sonic temperature-raising shock. After the collision, 
the decay of the shock is at first due to the interaction with the non-centred TLF 
emitted by the rear sonic shock during the time interval to < t 6 t,. This interaction 
is depicted in figure 9 and the resultant decay law is found to be 

where w, again denotes the value of w just after the shock. At t = t,, the interaction 
is complete and the remainder of the decay is through the centred fan originating at 
x = 0, t = $. As in cases (if and (ii) this final stage of the decay is governed by (5.4). 

The distinguishing feature of case (iv) is that the penetration into the & < 0 region, 
or, more appropriately, the u‘ < 0 region, is so deep that the temperature decrease 
a t  the rear of the square pulse can be accomplished by a pure temperature-lowering 
shock. As indicated in figure 10, the early stages of the development are characterized 
by a sonic temperature-raising shock of strength and speed identical to that of case 
(iii) followed by a centred temperature-raising fan and then a constant-temperature 
region. This isothermal region is terminated by a non-sonic temperature-lowering 
shock. However, the interaction with the centred fan associated with the lead shock 
will eventually weaken the rear shock until it  violates the admissibility condition 
( 4 . 1 6 ~ )  or (4.17) at x = x,. The rear shock then undergoes a partial disintegration into 
a sonic shock followed by a non-centred temperature-lowering fan. An interesting 
feature of this case is that the decay of the post-collision merged shock is entirely 
through the non-centred fan emitted by the rear shock from t, to t,. The collision 
distance for case (iv) is 

r: ~ a O S O P O % u T  

and the decay law for x > x, is 

which is recognized as of the same general form as (5.7). 
In each of cases (ii)-(iv) the strength and speed of the leading shock remains 

constant until the collision with the temperature-lowering shock originating a t  x = 
0, t = + ; this collision results in a discontinuous change in the speed and strength of 
the leading shock. Because the collision distance can play an important role in the 
interpretation of experimental results we have plotted the x,  ws. Q relations given in 
(5.5),  (6.6) and (5.8) in figure 11. The dashed line in this figure is not a collision 
distance but the distance at which the centred fan first catches the lead shock in case 
(i). Its significance is similar to the collision distances in that it marks the distance 
a t  which the front shock first begins to weaken and slow. This interaction distance 
is given by 

We note that the minimum interaction distance occurs when 

9-2 
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FIGURE 11. Variation of collision distance with &. The solid line represents equations (5 .5 ) ,  (5.6) and 
(5.8). The dashed line represents the distance a t  which the shock first begins interacting with the 
centred fan in case (i). 

which yields a minimum distance of 

(5.10) 

As an example, we consider the small-r case (T,  = 1.86 K) studied by Cummings, 
Schmidt & Wagner (1978). As in $6, we take uT = 19.29 m/s, 4 z 0.0775 and A to 
be the value a t  1.884 K. (To the accuracy inherent in (3.5) and (3.8) we may evaluate 
A either a t  the actual undisturbed state or at, the zero of r.) We then find that (5.10) 
may be approximated by 

xmin = 15.97$, 

where x is in mm and $ is in ps. For the 50 ps pulse used to generate figure 8 of their 
study we find that xmin z 798 mm which is over ten times larger than any of the 
distances employed. Thus, we would not expect to see any decrease (whether 
continuous or discontinuous) in the shock speed with Q in the 1.86K series of 
experiments ; this appears to be consistent with the data presented by Cummings and 
co-workers. 

It is of interest to contrast (5.9) with the corresponding result of the Khalatnikov 
theory : 

x=- 2iuT O10 '0 PI? % uT 
r, Q '  
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which predicts that  the interaction distance decreases monotonically with the 
magnitude of the heat input. The local minimum illustrated in figure 11 corresponds 
to a maximum speed difference between the temperature-raising shock and the 
leading edge of the temperature-lowering fan. The fact that such a maximum is 
inevitable in the present theory can also be seen by inspection of the nonlinear sound 
and shock speeds plotted in figure 4. The collision distances are also seen to increase 
monotonically with Q. This can again be explained by a detailed examination of the 
relative shock speeds. In fact, the speed of the leading shock is fixed after becoming 
sonic a t  

while the initial speed of the trailing shock continues to 
greater than 

the initial speed of the trailing shock is actually less than 

decrease. For heat fluxes 

that of the leading shock. 
At these levels, the two shocks are actually moving away from each other rather than 
towards each other. The trailing shock only begins to catch the lead shock after being 
accelerated by the interaction with the temperature-raising fan. 

As a second example of our results, we examine the conditions required for the 
experimental detection or observation of the collision process. We consider an 
undisturbed temperature of 1.825 K. We again evaluate & using a graphical 
interpolation, A a t  1.884 K and all other parameters by averaging the values a t  1.80 
and 1.85 K. As a result, 

If we consider a pulse of duration .i = 20 ps and Q = 36 W/cm2 and employ (5.9) we 
find that the interaction between the leading shock and the temperature-lowering fan 
begins a t  64.0 mm. A collision of the type described in case (ii) occurs for a pulse of 
the same duration and Q = 46 W/cm2 at a distance from the heater of 82.8 mm. The 
collision between two sonic shocks described in case (iii) occurs for .f = 20 ps, 4 = 
69 W/cm2 a t  162.8 mm. It therefore appears that the observation of the evolution of 
double shocks up to and including collisions is entirely possible within the constraints 
of current technology. 

6. Comparison with experimental studies 
In this section, we compare the results of the present theory to recent experimental 

studies. The first set are those of T. N. Turner. Although no shock strengths were 
given corresponding to the temperature profiles presented in the 1981 article, the 
qualitative features are all in agreement with the present theory, including the 
general ordering of the profiles, the order of magnitudes involved and the direction 
of the curvature of the temperature variation. Our results also appear to be 
qualitatively consistent with the experiments of Torczynski et al. (1984). 

More extensive comparisons can be made with the signal-speed measurements of 
Cummings et al. (1978). The present theory is expected to be in reasonable agreement 
with the data a t  1.86 K. The undisturbed state is fairly close to the r, = 0 point and 
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FIQURE 12. Variation of signal speed with heat input at Ta = 1.86 K. The circles denote data points 
from Cummings et aE. (1978). For heat inputs beyond the point marked s the strength of the lead 
shock is fixed at the sonic value. 

the experiments of Turner (1981) show that mixed nonlinearity, relatively free of the 
effects of quantum turbulence, may be attained in the neighbourhood of this bath 
temperature. The experimental data of Cummings et al., along with the results of the 
present theory, are plotted in figure 12. The formulae used to plot the present theory 
are 

(6.1) 
o < q < g ,  
8 < q, 

where 4” 14 Q 
4 aO ‘OPO % uT 

is a non-dimensional heat flux. At the lower heat fluxes the shock is non-sonic and 
follows the parabola plotted in figure 4. At q = $ the shock becomes sonic. As 
discussed in $ 5 ,  the shock strength and speed then become fixed at the sonic value. 
Our calculations indicate that this occurs at a Q x 26.1 W/cm2 when the undisturbed 
state is 1.86 K. The numerical values for aosopo  Tau,, & and A were found to be 
209.25 W/cmZ, 7.75 x lop2 and -0.9322, respectively. The first was obtained by a 
straightforward linear interpolation between 1.85 K and 1.9 K. As pointed out in the 
previous section, the value of A may be taken to be that a t  1.884 K with no loss in 
generality. It was found that linear interpolation of 4 was not sufficiently accurate 
when f ,  is small, so a more accurate graphical interpolation was used instead. The 
experimental points were taken from the original tabular data rather than the plots 
of Cummings et al. (1978). This tabular data was kindly transmitted to the authors 
by R. J. Atkin and is displayed in table 2. It should be noted that the original data 
were only recorded to four significant digits. The equality of the signal speeds a t  4.70 
and 8.35 W/cm2 is therefore likely to be due to the round-off process. To further 
place our results in the context of these experiments we have compared our speeds, 
rounded off to the same accuracy, to those of Cummings et al. in table 2. 
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0 
2.09 
4.70 
8.35 

13.05 
18.80 
29.36 
37.71 
44.66 

TABLE 2. Tabular data of Cummings et a 

19.29 
19.30 
19.32 
19.32 
19.34 
19.34 
19.34 
19.34 
19.34 

u, I CB1 

(m/s) 
- 

19.30 
19.30 
19.32 
19.32 
19.32 
19.34 
19.34 
19.34 

(1978) for the signal speed. Cr..:ulated values ( u ~  I cal) are 
obtained from equations (6. l ) ,  (6.2)with the indicated numerical values. The complete results were 
then rounded off to the accuracy of the experimental data. 

For purposes of comparison we have also plotted the results of the Khalatnikov 
theory 

r,Q 
uT aOsOPO%uT 

and, with a dashed line, the theoretical results of Atkin & Fox (1984). The formulae 
used in plotting Atkin & Fox's theory are the parametric equations 

u,-uT - 3.8AT-65(AT)' -- 
U T  19.29 

Q = 955611 + 4025(AT)', 

where AT is the induced temperature rise in K and 4 is in W/cm2. The numerical 
coefficients are those used by Atkin & Fox (1984) in their figure 2. There are two 
primary differences between our theory and that of Atkin & Fox. The first is that 
Atkin & Fox have taken p = constant and v = constant, whereas we make no 
restrictions on the variation of the bulk density and speed. As a result, Atkin & Fox 
do not account for the first-order (the linear theory is the zeroth-order) pressure and 
density perturbations generated by nonlinear effects. Although these perturbations 
can be ignored in the Khalatnikov theory, a careful examination of the derivation 
of (3.8) shows that they are essential for the computation of the second nonlinearity 
coefficient A .  However, the numerical error involved in neglecting the induced 
density perturbations appears to be moderate. For example, the difference between 
our A and an effective coefficient based on Atkin & Fox's u2 is only about 12.5 YO a t  
1.884 K. We should note that the Khalatnikov parameters of each theory are 
identical, although there appears to be small differences in the numerical estimation. 
The second difference between our theory and that of Atkin & Fox is that they did 
not consider the flow surrounding the shock, nor did they examine the dissipative 
structure. Thus, their work does not take into account the fundamental existence 
conditions and therefore the partial disintegration and speed-limiting processes 
found in the experimental studies quoted here. 

On the basis of these comparisons we conclude that the theory presented here 
provides a reasonable quantitative as well as qualitative model for second-sound 
propagation in the neighbourhood of the zero of the Khalatnikov steepening 
parameter. It also appears reasonable to conclude that the speed limitation seen in 
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the 1.86 K series runs of Cummings et al. (1978) is the partial disintegration of the 
lead shock described in previous sections. This mechanism was first identified by 
Turner (1983) who referred to this as the wave dynamic limit. 

We do not expect any agreement between our results and the experiments a t  the 
higher bath temperatures. For example, a t  T, = 1.759 K, we estimate 4 z 0.35, 
which is likely to be too large for the present theory. More importantly, the slip 
velocities based on (5.3) exceed the critical velocities identified by Turner (1983) a t  
values of 0 exceeding 26 W/cm2; see, for example, figure 17 of Turner (1983). 
Because the breakdown of the superfluidity has taken place long before the 
mechanisms described here can take effect, the agreement between experiment and 
theory is poor. In  particular, our theory yields values of the maximum speed 
difference that are 2.5 times larger than the observed values. 

7. Summary 
It has been shown that the nonlinear propagation of second sound is governed by 

the cubic Burgers’ equation (4.3) when the undisturbed state is in the neighbourhood 
of one of the zeros of the quadratic nonlinearity parameter (1.3). Numerical values 
for the new nonlinearity parameter A were estimated through use of the tabular data 
of Maynard (1976) and Khalatnikov’s (1952) theoretical estimate of the pn = pn(w) 
relation. Solutions to (3.5) or (4.3) combined with the numerical estimates of (3.8) are 
in reasonable quantitative and qualitative agreement with the experimental results 
of Turner (1979, 1981), Torczynski et al. (1984) and Cummings et al. (1978). 

An important observation is that the second nonlinearity parameter must be 
taken to be the dynamic parameter A rather than the static parameter based on the 
slope of the r vs. T curvc. As a result, mixed nonlinearity (in the sense of 
simultaneous forward and backward steepening) is possible in disturbances having 
strictly positive (or strictly negative) values of the Khalatnikov steepening coefficient 
r a t  every point in the disturbance. The reason for the difference between (3.8) and 
(3.13) is that (1.3) is only an approximation to the exact steepening coefficient. A 
careful inspection of the derivation of (3.7) shows that terms neglected in (1.3) make 
a non-zero contribution to (3.8). In  retrospect, it would be surprising if simple 
differentiation of (1.3), which is the steepening coefficient evaluated at the 
undisturbed state p = p,, T = T,, w = 0, would yield the correct parameter. 

The present study leaves the results of the Khalatnikov (& = O(1)) theory 
unchanged. Even when 4 = o( l ) ,  the direction of steepening of sufficiently weak 
waves will still be determined by the sign of 4. In  waves of larger amplitude, the 
more complete model based on (3.5) or (4.3) will be required for purposes of 
predicting and describing mixed nonlinearity. 

Results of further interest in the non-dissipative theory are the expressions for the 
shock speed (4.9) and the existence conditions for weak second-sound shocks 
involving mixed nonlinearity. The conditions (4.16) or (4.17) are expected to be both 
sufficient and necessary for the existence of shocks near the 4 = 0 locus. This is 
because these were based on the existence of a dissipative structure which 
automatically takes into account the irreversible portion of the entropy increase 
across the shock. 

The authors have profited by a number of stimulating conversations with Drs 
T. N. Turner and R. J. Atkin. Their comments and suggestions have led to significant 
improvements to this work and are greatly appreciated. 
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Appendix. General evolution equation 
We consider a general quasi-linear, strictly hyperbolic system of the form 

Ai,j(Up) u ~ E  = 0. (A 1)  

As in the body of this report, we employ the Einstein summation convention and the 
subscripts z, trefer to partial derivatives with respect to space and time. The solution 
vector is N x 1 and the speed matrix A ,  is N x N .  The italic indicies will range from 
1 to N.  As in Taniuti & Wei (1968), we assume small disturbances to a uniform rest 
state so that 

ui = uf + eu: + O ( E 2 ) ,  

where uf is a constant vector and u:(x,~) is the disturbance. The non-dimensional 
small parameter E is a measure of the disturbance amplitude. The evolution equation 
derived by Taniuti & Wei (1968) is just the inviscid Burgers’ equation 

~ ~ + ~ r u u ,  = 0, (A 2 )  

where r i s  an order-one constant characterizing the system (A 1 )  and the undisturbed 
state. The spatial variable X is z-hq where h is an eigenvalue of A,(u;) .  In  the 
present study r i s  chosen to be O(e). To lowest order (A 2) implies that no steepening 
is noticeable over the times considered by Taniuti & Wei, i.e. e-l. The actual 
steepening will be seen a t  times of order ( s I ‘ - l  = 0(ep2). Furthermore, certain terms 
neglected, and therefore not shown, in (A 2 )  will make contributions equal to that of 
the quadratic term shown. 

Teymur & Suhubi (1978) have presented a method of accounting for the higher- 
order terms when the speed matrix A ,  is of special form. However, the required 
conditions are not satisfied in general problems and, in particular, the superfluid 
system. 

Sen & Cramer (1987) have shown that the general extension of ( A  2)  when r = O(e) 
is 

U , + ( f + g A U )  UU, = 0, (A 3) 
where the subscripts denote differentiation with respect to T = E2fandX = z-hfand 

(A 41 
f = ‘6 Bijk ‘ j  ‘k 

elrnrm ’ 

The constant vectors li and ri are the left and right eigenvectors to the linearized A ,  
matrix ; i.e. 

where aij is the Kronecker delta and Afj E Aif(uE). As in the work of Taniuti & Wei, 
the eigenvalue h is just the non-dimensional version of the linear wavespeed. The 
quantities B,,, Bifk, Cijkl are defined 

(A& - A&.) rf = 0, (Afj - A&,,) lt = 0, (A 6) 
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The vector u; is the state at which r= 0, i.e. 

M .  S. Crarner and R. Sen 

li r j  rk B:jk = 0. (A 8) 

The quantities d,, e,, each of which is ( N -  1) x 1, are determined by solving the 
following linear systems 

where Rap = SajSp, and Sai is an (N-  1) x N array formed by the (N-  1) linearly 
independent rows of the singular matrix A!j-hd,. In (A 5) and (A 9) the Greek 
indicies take on these (N-1) values. The remaining quantities found on the right- 
hand sides of (A 9) are defined by 

b, = BC,iqlp~q, ci = BCpqiIprq. (A 10) 

To the accuracy required here, B:jk may be replaced by Bdk in (A 10). Finally, we note 
that the lowest-order solution to (A 1) is 

ut = u!+EriU+0(E2). 

All of the quantities appearing in (A 3) are of order one. To verify this for f, we 
note that 

Hence, zZ(Bijk -B&k) ' j  rk = O(€). 

The result that 1,.&Jkrirk = O(e) then follows immediately from (A 8). 
A comparison of (A 4) with the results of Taniuti & Wei (1968) reveals that f will 

always be the value of rappearing in (A 2) divided by E .  This is verified in the present 
study and in the independent calculations of Cramer & Kluwick (1984). 

The effects of weak dissipation and weak dispersion were also discussed by Sen & 
Cramer (1987). It is shown that the appropriate dissipation and dispersion coefficients 
are simply carried over from either the linear or r= 0(1) theory. The case of 
dissipation is illustrated in the present study. 

The new feature here is the general algorithm for the calculation of the cubic 
nonlinearity coefficient A .  The portion of this involving CUrl is clearly due to the 
higher-order terms in the expansion of the speed matrix A,,. The terms involving d, 
and e ,  arise because the higher-order terms in the perturbation expansion of ui 
necessarily make a contribution to the final value of A .  Thus, in addition to solving 
the linearized problem for ui ( = r i  U ) ,  it was necessary to determine the particular 
solution for the first correction u:. The reduced linear equations (A 9) are a direct 
result of the singular nature of the inhomogeneous problem for u:. For further 
details, the reader is referred to the original study by Sen & Cramer (1987). 
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